Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Mol Biol ; 430(5): 682-694, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29341887

RESUMEN

The molecular basis of polyspecificity of Mdr1p, a major drug/H+ antiporter of Candida albicans, is not elucidated. We have probed the nature of the drug-binding pocket by performing systematic mutagenesis of the 12 transmembrane segments. Replacement of the 252 amino acid residues with alanine or glycine yielded 2/3 neutral mutations while 1/3 led to the complete or selective loss of resistance to drugs or substrates transported by the pump. Using the GlpT-based 3D-model of Mdr1p, we roughly categorized these critical residues depending on their type and localization, 1°/ main structural impact ("S" group), 2°/ exposure to the lipid interface ("L" group), 3°/ buried but not facing the main central pocket, inferred as critical for the overall H+/drug antiport mechanism ("M" group) and finally 4°/ buried and facing the main central pocket ("B" group). Among "B" category, 13 residues were essential for the large majority of drugs/substrates, while 5 residues were much substrate-specific, suggesting a role in governing polyspecificity (P group). 3D superposition of the substrate-specific MFS Glut1 and XylE with the MDR substrate-polyspecific MdfA and Mdr1p revealed that the B group forms a common substrate interaction core while the P group is only found in the 2 MDR MFS transporters, distributed into 3 areas around the B core. This specific pattern has let us to propose that the structural basis for polyspecificity of MDR MFS transporters is the extended capacity brought by residues located at the periphery of a binding core to accomodate compounds differing in size and type.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antiportadores/metabolismo , Candida albicans/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Secuencia de Aminoácidos , Antiportadores/química , Antiportadores/genética , Transporte Biológico , Candida albicans/química , Candida albicans/genética , Farmacorresistencia Fúngica Múltiple , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Transporte de Catión Orgánico/química , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo , Conformación Proteica , Dispersión del Ángulo Pequeño , Alineación de Secuencia , Especificidad por Sustrato
3.
Biochim Biophys Acta Biomembr ; 1859(10): 1778-1789, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28559186

RESUMEN

The present study examines the kinetics of steroids efflux mediated by the Candida drug resistance protein 1 (Cdr1p) and evaluates their interaction with the protein. We exploited our in-house mutant library for targeting the 252 residues forming the twelve transmembrane helices (TMHs) of Cdr1p. The screening revealed 65 and 58 residues critical for ß-estradiol and corticosterone transport, respectively. Notably, up to 83% critical residues for corticosterone face the lipid interface compared to 54% for ß-estradiol. Molecular docking identified a possible peripheral corticosterone-binding site made of 8/14 critical/non-critical residues between TMHs 3, 4 and 6. ß-estradiol transport was severely hampered by alanine replacements of Cdr1p core residues involving TMHs 2, 5 and 8, in a binding site made of 10/14 critical residues mainly shared with rhodamine 6G with which it competes. By contrast, TMH11 was poorly impacted, although being part of the core domain. Finally, we observed the presence of several contiguous stretches of 3-5 critical residues in TMHs 2, 5 and 10 that points to a rotation motion of these helices during the substrate transport cycle. The selective structural arrangement of the steroid-binding pockets in the core region and at the lipid-TMD interface, which was never reported before, together with the possible rotation of some TMHs may be the structural basis of the drug-transport mechanism achieved by these type II ABC transporters.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Sitios de Unión/fisiología , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Hormonas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Esteroides/metabolismo , Transporte Biológico/fisiología , Humanos , Lípidos/fisiología , Simulación del Acoplamiento Molecular/métodos , Estructura Secundaria de Proteína
4.
Bioorg Med Chem ; 25(13): 3278-3284, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28479022

RESUMEN

Macrocyclic diterpenes were previously found to be able to modulate the efflux pump activity of Candida albicans multidrug transporters. Most of these compounds were jatrophanes, but only a few number of lathyrane-type diterpenes was evaluated. Therefore, the aim of this study was to evaluate the ability of nineteen structurally-related lathyrane diterpenes (1-19) to overcome the drug-efflux activity of Cdr1p and Mdr1p transporters of C. albicans, and get some insights on their structure-activity relationships. The transport assay was performed by monitoring Nile Red (NR) efflux in a Saccharomyces cerevisiae strain overexpressing the referred efflux pumps from C. albicans. Moreover, a chemosensitization assay was performed in order to evaluate the type of interaction between the inhibitory compounds and the antifungal drug fluconazole. Compounds 1-13 were previously isolated from Euphorbia boetica or obtained by derivatization, and compounds 14-19 were prepared by chemical transformations of compound 4. In the transport assays, compounds 14-19 revealed the strongest inhibitory activity of the Cdr1p efflux pump, ranging from 65 to 85%. Concerning Mdr1p efflux pump, the most active compounds were 1, 3, 6, 8, and 12 (75-85%). When used in combination with fluconazole, epoxyboetirane K (2) and euphoboetirane N (18) revealed synergistic effects in the AD-CDR1 yeast strain, overexpressing the Cdr1p transporter, through their ability to reduce the effective concentration of the antifungal drug by 23- and 52-fold, respectively.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Diterpenos/farmacología , Proteínas Fúngicas/antagonistas & inhibidores , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Antifúngicos/síntesis química , Antifúngicos/química , Transporte Biológico/efectos de los fármacos , Candida albicans/metabolismo , Diterpenos/síntesis química , Diterpenos/química , Relación Dosis-Respuesta a Droga , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Factores de Transcripción/metabolismo
5.
J Nat Prod ; 80(2): 479-487, 2017 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-28106996

RESUMEN

Twenty-nine jatrophane esters (1-10, 12-30) and one lathyrane (11) diterpenoid ester isolated from Euphorbia species were evaluated for their capacity to inhibit drug-efflux activities of the primary ABC transporter CaCdr1p and the secondary MFS transporter CaMdr1p of Candida albicans, in yeast strains overexpressing the corresponding transporter. These diterpenoid esters were obtained from Euphorbia semiperfoliata (1-10), E. insularis (11), and E. dendroides (12-30) and included five new compounds, euphodendroidins P-T (26-30). The jatrophane esters 12 and 23 were found to inhibit the efflux of Nile Red (NR) mediated by the two multidrug transporters, at 85-64% for CaCdr1p and 79-65% for CaMdr1p. In contrast, compound 21 was selective for CaCdr1p and induced a strong inhibition (92%), whereas compound 8 was selective for CaMdr1p, with a 74% inhibition. It was demonstrated further that potency and selectivity are sensitive to the substitution pattern on the jatrophane skeleton. However, these compounds were not transported and showed no synergism with fluconazole cytotoxicity.


Asunto(s)
Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Candida albicans/metabolismo , Diterpenos/aislamiento & purificación , Diterpenos/farmacología , Euphorbia/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Antifúngicos/química , Transporte Biológico/efectos de los fármacos , Candida albicans/efectos de los fármacos , Diterpenos/química , Ésteres , Fluconazol/farmacología , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular
6.
Biochim Biophys Acta ; 1858(11): 2858-2870, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27569110

RESUMEN

The ABC (ATP-Binding Cassette) transporter Cdr1 (Candida drug resistance 1) protein (Cdr1p) of Candida albicans, shows promiscuity towards the substrate it exports and plays a major role in antifungal resistance. It has two transmembrane domains (TMDs) comprising of six transmembrane helices (TMH) that envisage and confer the substrate specificity and two nucleotide binding domains (NBDs), interconnected by extracellular loops (ECLs) and intracellular loops (ICLs) Cdr1p. This study explores the diverse substrate specificity spectrum to get a deeper insight into the structural and functional features of Cdr1p. By screening with the variety of compounds towards an in-house TMH 252 mutant library of Cdr1p, we establish new substrates of Cdr1p. The localization of substrate-susceptible mutants in an ABCG5/G8 homology model highlights the common and specific binding pockets inside the membrane domain, where rhodamines and tetrazoliums mainly engage the N-moiety of Cdr1p, binding between TMH 2, 11 and surrounded by TMH 1, 5. Whereas, tin chlorides involve both N and C moieties located at the interface of TMH 2, 11, 1 and 5. Further, screening of the in house TMH mutant library of Cdr1p displays the TMH12 interaction with tetrazolium chloride, trimethyltin chloride and a Ca2+ ionophore, A23187. In silico localization reveals a binding site at the TMH 12, 9 and 10 interface, which is widely exposed to the lipid interface. Together, for the first time, our study shows the molecular localization of Cdr1p substrates-binding sites and demonstrates the participation of TMH12 in a peripheral drug binding site.


Asunto(s)
Aminoácidos/química , Antifúngicos/metabolismo , Farmacorresistencia Fúngica Múltiple/genética , Proteínas Fúngicas/química , Proteínas de Transporte de Membrana/química , Mutación , Sustitución de Aminoácidos , Aminoácidos/metabolismo , Antifúngicos/farmacología , Sitios de Unión , Calcimicina/metabolismo , Calcimicina/farmacología , Candida albicans/química , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expresión Génica , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mutagénesis , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodaminas/metabolismo , Rodaminas/farmacología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homología Estructural de Proteína , Especificidad por Sustrato , Tetrazoles/metabolismo , Tetrazoles/farmacología , Compuestos de Estaño/metabolismo , Compuestos de Estaño/farmacología
8.
Sci Rep ; 6: 27132, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27251950

RESUMEN

An analysis of Candida albicans ABC transporters identified conserved related α-helical sequence motifs immediately C-terminal of each Walker A sequence. Despite the occurrence of these motifs in ABC subfamilies of other yeasts and higher eukaryotes, their roles in protein function remained unexplored. In this study we have examined the functional significance of these motifs in the C. albicans PDR transporter Cdr1p. The motifs present in NBD1 and NBD2 were subjected to alanine scanning mutagenesis, deletion, or replacement of an entire motif. Systematic replacement of individual motif residues with alanine did not affect the function of Cdr1p but deletion of the M1-motif in NBD1 (M1-Del) resulted in Cdr1p being trapped within the endoplasmic reticulum. In contrast, deletion of the M2-motif in NBD2 (M2-Del) yielded a non-functional protein with normal plasma membrane localization. Replacement of the motif in M1-Del with six alanines (M1-Ala) significantly improved localization of the protein and partially restored function. Conversely, replacement of the motif in M2-Del with six alanines (M2-Ala) did not reverse the phenotype and susceptibility to antifungal substrates of Cdr1p was unchanged. Together, the M1 and M2 motifs contribute to the functional asymmetry of NBDs and are important for maturation of Cdr1p and ATP catalysis, respectively.


Asunto(s)
Candida albicans/metabolismo , Farmacorresistencia Fúngica , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Adenosina Trifosfato/química , Alanina/genética , Secuencias de Aminoácidos , Antifúngicos , Sitios de Unión , Candida albicans/efectos de los fármacos , Candida albicans/genética , Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Mutación , Unión Proteica , Pliegue de Proteína
9.
Planta Med ; 82(13): 1180-5, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27145238

RESUMEN

Thirteen macrocyclic diterpenes (1-13) of the jatrophane and lathyrane types, either isolated from Euphorbia species or obtained by chemical derivatization, were evaluated for their ability to inhibit the drug efflux activity of Candida albicans CaCdr1p and CaMdr1p multidrug transporters overexpressed in a Saccharomyces cerevisiae strain. Their inhibitory potential was assessed through a functional assay of Nile Red accumulation monitored by flow cytometry. A chemosensitization assay, using the checkerboard method, was also performed with the active compounds in order to evaluate their type of interaction with fluconazole.In the transport assay, most compounds were found to inhibit both transporters, most likely as non-substrates, as shown by relative resistance indices close to unity. In contrast, the jatrophanes euphopubescenol (10) and euphomelliferene A (11) were selective for CaMdr1p and CaCdr1p, respectively. Moreover, when used in combination with fluconazole, compounds 12 and 13 displayed strong synergistic interactions (FICI = 0.071) against the yeast strain overexpressing CaMdr1p, decreasing the MIC80 of the antifungal agent 13-fold. Both compounds were also able to reduce the effective concentration of this antifungal agent by 4- to 8-fold against an azole-resistant clinical isolate of C. albicans (F5).


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Diterpenos/farmacología , Farmacorresistencia Fúngica Múltiple , Euphorbia/química , Proteínas de Transporte de Membrana/efectos de los fármacos , Extractos Vegetales/farmacología , Antifúngicos/aislamiento & purificación , Diterpenos/aislamiento & purificación , Pruebas de Sensibilidad Microbiana
10.
Adv Exp Med Biol ; 892: 327-349, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26721281

RESUMEN

There are currently few antifungals in use which show efficacy against fungal diseases. These antifungals mostly target specific components of fungal plasma membrane or its biosynthetic pathways. However, more recent class of antifungals in use is echinocandins which target the fungal cell wall components. The availability of mostly fungistatic antifungals in clinical use, often led to the development of tolerance to these very drugs by the pathogenic fungal species. Thus, the development of clinical multidrug resistance (MDR) leads to higher tolerance to drugs and its emergence is helped by multiple mechanisms. MDR is indeed a multifactorial phenomenon wherein a resistant organism possesses several mechanisms which contribute to display reduced susceptibility to not only single drug in use but also show collateral resistance to several drugs. Considering the limited availability of antifungals in use and the emergence of MDR in fungal infections, there is a continuous need for the development of novel broad spectrum antifungal drugs with better efficacy. Here, we briefly present an overview of the current understanding of the antifungal drugs in use, their mechanism of action and the emerging possible novel antifungal drugs with great promise.


Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Pared Celular/efectos de los fármacos , Proteínas Fúngicas/antagonistas & inhibidores , Oxidorreductasas/antagonistas & inhibidores , Azoles/farmacología , Candida/genética , Candida/metabolismo , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Membrana Celular/química , Membrana Celular/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Farmacorresistencia Fúngica Múltiple/genética , Equinocandinas/farmacología , Ergosterol/antagonistas & inhibidores , Ergosterol/biosíntesis , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expresión Génica , Humanos , Morfolinas/farmacología , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Polienos/farmacología , Tiocarbamatos/farmacología
11.
Adv Exp Med Biol ; 892: 351-376, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26721282

RESUMEN

An enhanced expression of genes encoding ATP binding cassette (ABC) and major facilitator superfamily (MFS) transport proteins are known to contribute to the development of tolerance to antifungals in pathogenic yeasts. For example, the azole resistant (AR) clinical isolates of the opportunistic human fungal pathogen Candida albicans show an overexpression of CDR1 and/or CaMDR1 belonging to ABC and MFS, superfamilies, respectively. The reduced accumulation (due to rapid efflux) of drugs in AR isolates confirms the role of efflux pump proteins in the development of drug tolerance. Considering the importance of major multidrug transporters, the focus of recent research has been to understand the structure and function of these proteins which could help to design inhibitors/modulators of these pump proteins. This chapter focuses on some aspects of the structure and function of yeast transporter proteins particularly in relation to MDR in Candida.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Pared Celular/efectos de los fármacos , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Azoles/farmacología , Transporte Biológico , Candida albicans/genética , Candida albicans/metabolismo , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Membrana Celular/química , Membrana Celular/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Diseño de Fármacos , Farmacorresistencia Fúngica Múltiple/genética , Proteínas Fúngicas/genética , Expresión Génica , Humanos , Proteínas de Transporte de Membrana/genética
12.
Sci Rep ; 5: 11211, 2015 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-26053667

RESUMEN

The ABC transporter Cdr1 protein (Cdr1p) of Candida albicans, which plays a major role in antifungal resistance, has two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs) that are interconnected by extracellular (ECLs) and intracellular (ICLs) loops. To examine the communication interface between the NBDs and ICLs of Cdr1p, we subjected all four ICLs to alanine scanning mutagenesis, replacing each of the 85 residues with an alanine. The resulting ICL mutant library was analyzed by biochemical and phenotypic mapping. Only 18% of the mutants from this library displayed enhanced drug susceptibility. Most of the drug-susceptible mutants displayed uncoupling between ATP hydrolysis and drug transport. The two drug-susceptible ICL1 mutants (I574A and S593A) that lay within or close to the predicted coupling helix yielded two chromosomal suppressor mutations that fall near the Q-loop of NBD2 (R935) and in the Walker A motif (G190) of NBD1. Based on a 3D homology model and kinetic analysis of drug transport, our data suggest that large distances between ICL residues and their respective chromosomal suppressor mutations rule out a direct interaction between them. However, they impact the transport cycle by restoring the coupling interface via indirect downstream signaling.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Antifúngicos/farmacología , Candida albicans/genética , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Proteínas de Transporte de Membrana/genética , Sustitución de Aminoácidos/genética , Azoles/farmacología , Transporte Biológico/genética , Candida albicans/efectos de los fármacos , Candida albicans/metabolismo , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Pruebas de Sensibilidad Microbiana , Estructura Terciaria de Proteína
13.
FEMS Yeast Res ; 15(5): fov036, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26048893

RESUMEN

The ABC transporter Cdr1 protein of Candida albicans, which plays a major role in antifungal resistance, has two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). The 12 transmembrane helices of TMDs that are interconnected by extracellular and intracellular loops (ICLs) mainly harbor substrate recognition sites where drugs bind while cytoplasmic NBDs hydrolyze ATP which powers drug efflux. The coupling of ATP hydrolysis to drug transport requires proper communication between NBDs and TMDs typically accomplished by ICLs. This study examines the role of cytoplasmic ICLs of Cdr1p by rationally predicting the critical residues on the basis of their interatomic distances. Among nine pairs that fall within a proximity of <4 Å, an ion pair between K577 of ICL1 and E315 of NBD1 was found to be critical. The substitution, swapping and changing of the length or charge of K577 or E315 by directed mutagenesis led to a misfolded, non-rescuable protein entrapped in intracellular structures. Furthermore, the equipositional ionic pair-forming residues from ICL3 and NBD2 (R1260 and E1014) did not impact protein trafficking. These results point to a new role for ICL/NBD interacting residues in PDR ABC transporters in protein folding and trafficking.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Candida albicans/efectos de los fármacos , Proteínas Fúngicas/genética , Proteínas de Transporte de Membrana/genética , Transporte de Proteínas/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/ultraestructura , Candida albicans/genética , Candida albicans/metabolismo , Farmacorresistencia Fúngica Múltiple/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestructura , Isocitratoliasa/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/ultraestructura , Mutación , Pliegue de Proteína , Estructura Terciaria de Proteína
14.
J Nat Prod ; 77(12): 2700-6, 2014 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-25437914

RESUMEN

A series of structurally related jatrophane diterpenoids (1-6), including the new euphosquamosins A-C (4-6), was purified from the Iranian spurge Euphorbia squamosa and evaluated for its capacity to inhibit drug efflux by multidrug transporters of Candida albicans. Three of these compounds showed an interesting profile of activity. In particular, deacetylserrulatin B (2) and euphosquamosin C (6) strongly inhibited the drug-efflux activity of the primary ABC-transporter CaCdr1p, an effect that translated, in a yeast strain overexpressing this transporter, into an increased sensitivity to fluconazole. These compounds were transported by CaCdr1p, as shown by the observation of an 11-14-fold cross-resistance of yeast growth, and could also inhibit the secondary MFS-transporter CaMdr1p. In contrast, euphosquamosin A (4) was selective for CaCdr1p, possibly as a result of a different binding mode. Taken together, these observations suggest jatrophane diterpenes to be a new class of potent inhibitors of multidrug transporters critical for drug resistance in pathogenic yeasts.


Asunto(s)
Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Diterpenos/aislamiento & purificación , Diterpenos/farmacología , Euphorbia/química , Transportadoras de Casetes de Unión a ATP/efectos de los fármacos , Transportadoras de Casetes de Unión a ATP/metabolismo , Antifúngicos/química , Transporte Biológico/efectos de los fármacos , Diterpenos/química , Flores/química , Fluconazol/farmacología , Irán , Proteínas de Transporte de Membrana , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Hojas de la Planta/química , Tallos de la Planta/química , Rodaminas/farmacología , Saccharomyces cerevisiae/efectos de los fármacos
15.
J Biol Chem ; 288(34): 24480-93, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23824183

RESUMEN

The fungal ATP-binding cassette (ABC) transporter Cdr1 protein (Cdr1p), responsible for clinically significant drug resistance, is composed of two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). We have probed the nature of the drug binding pocket by performing systematic mutagenesis of the primary sequences of the 12 transmembrane segments (TMSs) found in the TMDs. All mutated proteins were expressed equally well and localized properly at the plasma membrane in the heterologous host Saccharomyces cerevisiae, but some variants differed significantly in efflux activity, substrate specificity, and coupled ATPase activity. Replacement of the majority of the amino acid residues with alanine or glycine yielded neutral mutations, but about 42% of the variants lost resistance to drug efflux substrates completely or selectively. A predicted three-dimensional homology model shows that all the TMSs, apart from TMS4 and TMS10, interact directly with the drug-binding cavity in both the open and closed Cdr1p conformations. However, TMS4 and TMS10 mutations can also induce total or selective drug susceptibility. Functional data and homology modeling assisted identification of critical amino acids within a drug-binding cavity that, upon mutation, abolished resistance to all drugs tested singly or in combinations. The open and closed Cdr1p models enabled the identification of amino acid residues that bordered a drug-binding cavity dominated by hydrophobic residues. The disposition of TMD residues with differential effects on drug binding and transport are consistent with a large polyspecific drug binding pocket in this yeast multidrug transporter.


Asunto(s)
Candida albicans/metabolismo , Farmacorresistencia Fúngica/fisiología , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Sustitución de Aminoácidos , Transporte Biológico Activo/fisiología , Candida albicans/química , Candida albicans/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Mutación Missense , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
16.
J Biol Chem ; 288(23): 16775-16787, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23592791

RESUMEN

Drug-resistant pathogenic fungi use several families of membrane-embedded transporters to efflux antifungal drugs from the cells. The efflux pump Cdr1 (Candida drug resistance 1) belongs to the ATP-binding cassette (ABC) superfamily of transporters. Cdr1 is one of the most predominant mechanisms of multidrug resistance in azole-resistant (AR) clinical isolates of Candida albicans. Blocking drug efflux represents an attractive approach to combat the multidrug resistance of this opportunistic human pathogen. In this study, we rationally designed and synthesized transmembrane peptide mimics (TMPMs) of Cdr1 protein (Cdr1p) that correspond to each of the 12 transmembrane helices (TMHs) of the two transmembrane domains of the protein to target the primary structure of the Cdr1p. Several FITC-tagged TMPMs specifically bound to Cdr1p and blocked the efflux of entrapped fluorescent dyes from the AR (Gu5) isolate. These TMPMs did not affect the efflux of entrapped fluorescent dye from cells expressing the Cdr1p homologue Cdr2p or from cells expressing a non-ABC transporter Mdr1p. Notably, the time correlation of single photon counting fluorescence measurements confirmed the specific interaction of FITC-tagged TMPMs with their respective TMH. By using mutant variants of Cdr1p, we show that these TMPM antagonists contain the structural information necessary to target their respective TMHs of Cdr1p and specific binding sites that mediate the interactions between the mimics and its respective helix. Additionally, TMPMs that were devoid of any demonstrable hemolytic, cytotoxic, and antifungal activities chemosensitize AR clinical isolates and demonstrate synergy with drugs that further improved the therapeutic potential of fluconazole in vivo.


Asunto(s)
Antifúngicos/farmacología , Azoles , Materiales Biomiméticos/farmacología , Candida albicans/metabolismo , Farmacorresistencia Fúngica/efectos de los fármacos , Proteínas Fúngicas/antagonistas & inhibidores , Péptidos/farmacología , Antifúngicos/química , Materiales Biomiméticos/química , Candida albicans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Péptidos/química , Estructura Secundaria de Proteína
17.
J Amino Acids ; 2011: 531412, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22312462

RESUMEN

Reduced intracellular accumulation of drugs (due to rapid efflux) mediated by the efflux pump proteins belonging to ABC (ATP Binding Cassette) and MFS (Major Facilitators) superfamily is one of the most common strategies adopted by multidrug resistance (MDR) pathogenic yeasts. To combat MDR, it is essential to understand the structure and function of these transporters so that inhibitors/modulators to these can be developed. The sequence alignments of the ABC transporters reveal selective divergence within much conserved domains of Nucleotide-Binding Domains (NBDs) which is unique to all fungal transporters. Recently, the role of conserved but divergent residues of Candida Drug Resistance 1 (CDR1), an ABC drug transporter of human pathogenic Candida albicans, has been examined with regard to ATP binding and hydrolysis. In this paper, we focus on some of the recent advances on the relevance of divergent and conserved amino acids of CaCdr1p and also discuss as to how drug interacts with Trans Membrane Domains (TMDs) residues for its extrusion from MDR cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...